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The stabi l i ty  p r o b l e m  i s  solved numer i ca l l y  for  an i ncompres s ib l e  plane je t .  The min imum 
cr i t i ca l  Reynolds num ber  is  de t e rmined .  A compar i son  is  drawn with r e su l t  obtained by 
a sympto t i c  me thods .  

Many au thors  have pursued  theore t i ca l  and exper imen ta l  inves t igat ions  of the s tabi l i ty  of i n c o m p r e s -  
sible j e t s .  E x p e r i m e n t s  have  shown that  los s  of s tabi l i ty  i s  obse rved  fo r  Reynolds  n u m b e r s  f r o m  10 to 30 
[1]. Theore t i ca l  ana lyses  based  on a sympto t i c  methods ,  on the other  hand, have led to e x t r e m e l y  d i spa ra t e  
r e s u l t s ,  even indicating nonexis tence  of the lower  b ranch  of the neut ra l  cu rve .  This  incons is tency is  
c l ea r ly  a t t r ibutable  to the d ive r s i ty  of a s sumpt ions  on which the approx ima te  analyt ica l  ca lcula t ions  a r e  
based .  We now c a r r y  out a n u m e r i c a l  ana lys i s  of the comple te  O r r - - S o m m e r f e l d  equation, us ing the 
method of [2]. 

We cons ider  the  s tabi l i ty  of a two-d imens iona l  l a m i n a r  jet  i ssuing f r o m  a n a r r o w  slot into a space  
fil led with a fluid at r e s t .  The longitudinal ve loc i ty  component  of the jet  has  the f o r m  [1] 

u = U~ sech ~ ay, (1) 

where  Uff = ( 3 M 2 / 3 2 p , v , x . ) l / 3  i s  the  c h a r a c t e r i s t i c  flow veloci ty ,  L .  = a (M/48p,~x2.)  i s  the c h a r a c t e r i s t i c  
+~ 

l length,  M = p~u2,dy, = const  i s  the m o m e n t u m  flux of the jet  in the d i rec t ion of the x ,  ax is ,  p ,  is  the 

densi ty  of the fluid, v ,  i s  the k inemat ic  v i scos i ty  coeff icient ,  a i s  a p a r a m e t e r  cha rac t e r i z ing  the width 
of the domain of in tegrat ion,  y = y , / L , ,  and x = x , / L , .  

The  O r r - - S o m m e r f e l d  equation with r e s p e c t  to  the complex  ampli tude of the pe r tu rbed- f low s t r e a m  
function i s  wr i t ten  as  follows in d imens ion less  va r i ab l e s :  

i (U - -  c) (qr - -  a2cp) - -  U"q~ = ~ __(r ~2,?~0IX q_ cz~cp), (2) 
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F ig .  1. Neut ra l  cu rves  for  a = 4 (dashed) and a = 8 (solid). 

F ig .  2. Values of c r on neut ra l  cu rve  fo r  a = 4 (dashed) 
and a = 8 (solid). 
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Fig .  3. Neutral  curves  according to: authors  (solid); 
Tatsumi  and Kakutani (dashed); Clenshaw and Elliott  
(dot-dash). 

where R * = U 0 L , / v .  is the Reynolds number ,  u(y) = u,U~ is the dimensionless  velocity profile,  c = c r + ic i 
is the complex phase velocity,  c r is the per turbat ion wave propagation velocity,  and c i is the growth (decay} 
ra te .  

Inasmuch as the investigated flow is symmet r i ca l  about the y axis,  the even and odd solutions ~{y) 
can be sought independently. We know f rom [3] that an t i symmetr ica l  per turbat ions  (~ even} a re  considered 
to be the mos t  dangerous,  and we the re fo re  adopt as  the boundary conditions on the s y m m e t r y  axis y = 0 

~ '  (o) = ~ "  (o) = o (3) 

The boundary conditions for  Eq.  (2) when y ~ ~ are  

(c~) : ~' (?o) = 0. (4) 

The numer ica l  calculat ions a re  car r ied  out in the finite domain 0 _ y ___ 1. Here  the p a r a m e t e r  a is 
made large  enough to permi t  the assumption U = 0 for  y _> 1. Then the complete solution of Eq. (2) in the 
domain y > 1 with allowance for  the boundedness condition at infinity has the fo rm 

= C1e-~Y + C2e-~Y, (5) 

where Ct and C 2 are  a r b i t r a r y  constants ,  fl = ~ ,  and ~r > 0. 

Following [2], we replace  Eq. (2) by a sys tem of nonlinear differential equations in the functions q, 
f, ~,, and ~, the numer ica l  integration of this sys tem is devoid of the problems that a r i se  in the numer ica l  
solution of Eq.  (2). The condition that the known outer  solution (5) and y _ 1 merge  with the solution of (2) 
inside the domain 0 _<y _< 1 implies  the following conditions at y = 1: 

1 
q(1)=~,  f ( l )= [~2- -~  2, f ' ( 1 ) = 0 ,  W(1) -  r  (6) 

If conditions (3) a re  to be satisfied on the axis,  the new functions q, ~, q,, and ~ must ,  as  inferred f rom 
[4 ], sat isfy the relat ion 

q~q - -  f ' ~  = 0, (7) 

where q, f, 9, and ~ a r e  evaluated at the point y = 0. 

We have thus reduced the problem to finding values of the p a r a m e t e r s  ~, R,  and c such that the lef t -  
hand side of Eq. (7) will be equal to ze ro .  To do so in the present  ar t ic le  we use  the procedure  and i t e r a -  
t i r e  schemes  proposed in [2, 4, 5]. The sys tem of equations for  the functions q, f, ~, and ~ is integrated 
f rom the outer  edge of the domain y = 1. 

The neutral  curves  calculated for  two different values of the p a r a m e t e r  a = 4 and 8 pract ica l ly  coin-  
cide and a re  highly consistent  with the analytical  resu l t s  of Tatsumi and Kakutani  [6] over a wide range 
of l a rge  wave numbers  (Figs.  1 and 3). It  is  evident f rom Fig.  2 that as  ~ tends to ze ro  the neutral  curve 
obtained for  a = 4 enters  into the domain of negative values of c r ,  but this excurs ion is unallowable f rom 
physical  considerat ions  and is caused by the fact  that  the domain of integrat ion was not made wide enough. 
Thus,  for  small  values of ~ the value of Cr becomes  small ,  and the cr i t ical  point u = e r is shifted upward 
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along the y axis, ~leaving n the domain of integration. With a decrease of a, therefore, it is necessary to 
increase the width of the domain of integration (see Fig.  2). Now the eigenvalues for large values of a 
remain practically invariant as a i s  increased. Thus, the minimum critical Reynolds for a > 8 does not 
differ from that obtained for a = 8 to the fourth significant figure. We have for the minimum Reynolds 
number normalized to a domain width a = 1 

1 

Rmi,,~- (4.5Mx.v, 2 )-r =3~981. 

Consequently, the minumum distance to which the jet remains laminar is determined from the expression 

2 (3.981) 3 v, 
x. = 4.5M 
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