VISCOUS INSTABILITY OF AN INCOMPRESSIBLE PLANE JET
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The stability problem is solved numerically for an incompressible plane jet. The minimum
critical Reynolds number is determined. A comparison is drawn with result obtained by
asymptotic methods,

Many authors have pursued theoretical and experimental investigations of the stability of incompres-
sible jets. Experiments have shown that loss of stability is observed for Reynolds numbers from 10 o 30
[1]. Theoretical analyses based on asymptotic methods, on the other hand, have led to extremely disparate
results, even indicating nonexistence of the lower branch of the neutral curve. This inconsistency is
clearly attributable to the diversity of assumptions on which the approximate analytical calculations are
based. We now carry out a numerical analysis of the complete Orr—Sommerfeld equation, using the
method of [2].

We consider the stability of a two-dimensional laminar jet issuing from a narrow slot into a space .
filled with a fluid at rest. The longitudinal velocity component of the jet has the form [1]

u=U¥ sech® ay, ) 1)
where Uy = (8M*/32p,v,%,)'/? is the characteristic flow velocity, L, =a (M/48px14x%) is the characteristic
Fos

length, M = 3 p§uidy* = const is the momentum flux of the jet in the direction of the x, axis, p4 is the
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density of the fluid, v, is the kinematic viscosity coefficient, a is a parameter characterizing the width
of the domain of integration, y = y«/L,, and x = x,/L,.

The Orr—Sommerfeld equation with respect to the complex amplitude of the perturbed-flow stream
function is written as follows in dimengionless variables:
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Fig. 1. Neutral curves for @ = 4 (dashed) and a = 8 (solid).

Fig. 2. Values of ¢, on neutral curve for a =4 (dashed)
and o = 8 (solid). : :
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Fig. 3. Neutral curves according to: authors (solid);
Tatsumi and Kakutanl (dashed); Clenshaw and Elliott
(dot—dash).

where R = UfL_/v, is the Reynolds number, u®) = u,Uj is the dimensionless velocity profile, ¢ = cp +ic;
is the complex phase velocity, ¢, is the perturbation wave propagation velocity, and ¢; is the growth (decay)
rate.

Inasmuch as the investigated flow is symmetrical about the y axis, the even and odd solutions ¢(y)
can be sought independently. 'We know from [3] that antisymmetrical perturbations (¢ even) are considered
to be the most dangerous, and we therefore adopt as the boundary conditions on the symmetry axisy =0

9" (0) = ¢”(0) = 0. 3)
The boundary conditions for Eq. (2) when y — « are
@ (o0) = @' (00) = 0. 4)

The numerical calculations are carried out in the finite domain 0 <y < 1. Here the parameter a is
made large enough to permit the assumption U = 0 for y = 1. Then the complete solution of Eq. (2) in the
domain y = 1 with allowance for the boundedness condition at infinity has the form

@ =Ce=8 - Cpe~w (5)

where C; and C, are arbitrary constants, g = vo’—icRe, and g > 0.

Following [2], we replace Eq. (2) by a system of nonlinear differential equations in the functions g,
f, ¢, and &, the numerical integration of this system is devoid of the problems that arise in the numerical
solution of Eq. (2). The condition that the known outer solution (5) and y = 1 merge with the solution of (2)
inside the domain 0 <y =< 1 implies the following conditions at y = 1:

g() =B, F(I) = B—a, [ (1) =0, ¥(1)= »—‘-B O (1) = o ®)

~

If conditions (3) are to be satisfied on the axis, the new functions q, f, ¥, and & must, as inferred from
{41, satisfy the relation

_ Og— ¥ =0, (7)
where q, f, ¥, and ¢ are evaluated at the point y = 0.

We have thus reduced the problem to finding values of the parameters ¢, R, and ¢ such that the left-
hand side of Eq. (7) will be equal to zero. To do so in the present article we use the procedure and itera-
tive schemes proposed in [2, 4, 5]. The system of equations for the functions q, £, ¥, and & is integrated
from the outer edge of the domainy =1.

The neutral curves calculated for two different values of the parameter ¢ = 4 and 8 practically coin-
cide and are highly consistent with the analytical results of Tatsumi and Kakutani [6] over a wide range
of large wave numbers (Figs. 1and 3). It is evident from Fig. 2 that as « tends to zero the neutral curve
obtained for a = 4 enters into the domain of negative values of ¢_, but this excursion is unallowable from
physical considerations and is caused by the fact that the domain of integration was not made wide enough.
Thus, for small values of @ the wvalue of cp becomes small, and the critical point u = cp is shifted upward
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along the y axis, "leaving" the domain of integration. With a decrease of o, therefore, it is necessary to
increase the width of the domain of integration (see Fig. 2). Now the eigenvalues for large values of o
remain practically invariant as a is increased. Thus, the minimum critical Reynolds for ¢ > 8 does not
differ from that obtained for a = 8 to the fourth significant figure. We have for the minimum Reynolds
number normalized to a domain widtha =1

1
Rmintz (4.51‘/1)6*\7;2 ) 3 =3,981.

"Consequently, the minumum distance to which the jet remains laminar is determined from the expression

(3.981)° v2,

= IR
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